ProJecT I'T-SECURITY
PDF-OVER AND HTML5H

REPORT & DOCUMENTATION

THOMAS FELBER 1031194

Contents

1 Report
1.1 Introduction
1.2 Status Quo
1.3 Motivation and Goal
1.4 Solution

2 Documentation

2.1 Project Files
2.2 Signature placement L
2.3 Entry Points to the PDF.js standalone application
2.4 Overriding/Extending behaviour of the sign button in PDF.js stan-
dalone

2.5 Limitations

1 Report

1.1 Introduction

PDF-AS is a software library, developed in JAVA, that makes use of advanced and

qualified certificates, to allow users to electronically sign PDF documents. One
of the core components of PDF-AS is it’s web module PDF-AS Web. PDF-AS
Web is built upon PDF-AS and establishes a web interface that can be used to
sign PDF documents but also can be used by external applications to embed PDF
signatures.

1.2 Status Quo
Currently, the PDF-AS Web online presence is quite basic. It offers different

[z] [z]

Verzsion: 4.0.7-SNAPSHOT - 353ac285e63d618e480c2eff143fF243216304b8

[Handy ” Server Keystore

Figure 1: Current state of the PDF-AS Web online presence (https://demo.
egiz.gv.at/demoportal-pdf_as/)

methods to sign PDF documents, however isn’t really visually appealing yet and
doesn’t offer any extra features like PDF preview or manual signature placement.

1.3 Motivation and Goal

Since PDF-AS Web’s online presence is still that slim, it is of concern to improve
it’s current state. Therefore, in the course of this project, several enhancements
to the website are being made. The whole website gets a visual overhaul using
HTMLS5 in combination with CSS3. In terms of additional features, Mozilla Labs’
PDF'.js library is used to make previewing PDF documents possible. Also new
features that come along with HTML5, such as drag and drop file selection, are
being taken advantage of. That is, the goal of this project can be summarized like
that:

e Use HTML5 + CSS3 and perform a visual overhaul on the website
e Introduce new features like a PDF rendering and drag and drop file selection

e Let the user manually place signatures

EN =«
DE

https://demo.egiz.gv.at/demoportal-pdf_as/
https://demo.egiz.gv.at/demoportal-pdf_as/

1.4 Solution

Visual overhaul

As already mentioned in Section 1.3, HTML5 + CSS3 was used to recreate PDF-
AS Web’s web interface. The new website consists of several different parts and
is illustrated in Figure 2. The File Selector section is here to let a user select the
PDF document that he wants to sign. He can either choose to select the PDF
file via the traditional HTML file selector element (i.e. press on ”Browse...”) or
just drag and drop the PDF file from his file manager into the dropzone (upper
part of the File Selector section). Via the Sign Method section, a user can choose

Preview

File Selector

o 3 Page 1 of14 — + AutomaticZoom * r 2 O &

Trace-based Just-in-Time Type Specialization for Dynamic

Drag and Drop your Document here . Languages

Andreas Gal**, Brendan Eich*, Mike Shaver*, David Anderson®, David Mandelin®,
Mohammad R. Haghighat®, Blake Kaplan®, Graydon Hoare*, Boris Zharsky*, Jason Orendorff*,
Jesse Ruderman®, Edwin Smith?, Rick Reitmaier, Michael Bebenitat, Mason Chang*#, Michael Franz®

Moilla Corporation”
{gal,brendan, shaver, T mrbkap, graydon, bz, j . jruderman)tnozilla. com

.. or select File here

Adohe Corporation®
{edvsaith, rreitnai | fadobe. com

Intel Corporation
{mohamnad. r . haghighat }intel . con
University of California, [rvine
{mbebenit, changm, franz }euci . edu

Abstract

Dynamic languages such as JavaScript are more difficult (o com-
pile: than statically typed oncs. Since no cancrete type information

and is used for the application logic of browser-based productivity
applications such as Google Mail, Google Docs and Zimbra Col-
laboration Suite. In this domain, in order to provide a fluid user

@ Hand is available, traditional 0 emit gencric ¥ virtoal ma-
b handle all possibltype cornbinations at antime. We present an af. HINES mast provide Tow starmp time and high performance.
Jermative coenpilating Tcfnige for oyoed Innganges Compilers for statically typed languages rely on type infarma-
that identifies frequently executed loop traces al run-time and then ~ 10R 10 gencrate efficient machine code. In a dynamically yped pro-
generates machine code on the fly that is specialized for the ac- gramming language such as JavaScript, the types of expressions
o dynamie typos aechng on each path hrough the foop. Our Y VarY at runtime. This means that the compilet can no longer
e L k I BKU ’y I rocedural ali and an easily transform operations into machine instructions that operate
=) L&l clegant and efficient way of incrementally compiling hizily discoy- " 00 specific type. Without exact type infortmation, the compilee
ered ultemative poths thyough nested ooms. We hive implemented st et slower poneralized machine code that can deal with all
 dynamic compiler for JavaScript based on our techmigue and we Potential ype combinations. While compile e static type infer-
have measured specdups of 10x and more for cerin benchmark ~ ©7° misht t fo gather type information lo generale opti-
. " s, ‘mized machine code, traditional static analysis is very expensive
© Online BKU prog and hence not well suited for the highly inferactive environment of
Categories and Subject Descriptors D34 [Programming Lan- 2 weh browser.
guages|: Processors — Incremental compilers, code generation. We present a frace-based compilation technique for dynamic
. languages that reconciles specd of compilation with excellent per-
R Gemem Terms - Design, Perfor- the gencrated machin cod. Our mixed-
© Server Keystore unce. ‘mode excention approach: the system staris running JavaScript in
Keywords JavaScript, just-in-time compilation, trace trees. fast-starting bytceode interpreter. As the program runs, the system
identifics hot (frequently exceuted) bytceode sequences, records
1. Introduction them, and compiles them to fust native code. We call stch a sc-
i quence of instructions a race.
Dymamic langmages soch as JavaScript, Python, and Reby, are pop- Unlike method-based dynamic compilers, our dynamic com-

ular since they are expressive, accessible to non-experts, and make piler aperates ar the granularity of individual loops. This design
deployment as easy as distributing a source file, They are used for — choice is hased on the expectation that programs spend most of
small scripts as well us for complex applications, JavaScript, for — their time in hot loops. Even in dynamically typed languages, we
caample, is the de facto standurd for client-side web Programming — expect hot loops ta be mostly fype-stable, meaning that the types of
values are invariant. (12) For example, we would expect loop coun-
tes that start as integers 1o remain integers for all itcrations. When
both of these expectations hold, a trace-based compiler can cover

Permisson o sk digital o band copics of sl or et of this woek for personsl or the program exceution with a small number of type-specialized, of-
o o rct] vl oo o s ot e et fcicatly compiled traces

or copics

on e s puge. T copy otherwise, 1 Tepublich, 1o post o8 ervers or 1o eisribute Each compiled trace covers one path through the pragram with
10 Rel, ot sgecili posmiasion andfori foo one mapping of values to types. When the ¥M executes a compiled

trace, it cannot guarantec that the same path will be followed
or that the same types will accur in subsequent loop iterations.

PLDI09, Jene 1530, 2009, Diublin, Ireland.
Copyright (€) 2008 ACM 0781 60358 397 10916, 5,00

Figure 2: Updated PDF-AS Web online presence

between different methods to actually sign a previously selected PDF document.
Available options are Handy, Lokale BKU, Online BKU and (if enabled on the
web server) Server Keystore. Depending on the choice, the user gets redirected

to a different service that requires some kind of authentication and then signs the
PDF document with the user’s electronic signature. Within the Language section,
a user has the option the select which language he wants the signature to be in.
Currently only German and English are supported. Below the Language section,
there is a button that starts the sign process if it is clicked.

A main component of the website is the Preview section. Within that, a user
gets a visual representation of the PDF document which he has previously selected.
He can scroll through the different pages of the document, adjust the zoom, open
a different file, print the file, place a signature etc. .

PDF renderer (PDF.js) and signature placement

In order to render the user selected PDF document, Mozilla Labs’ PDF.js library
is being used. Within the Preview section in Figure 2, a customized instance
of the PDF.js renderer can be seen. Some of the customization that have been
made to PDF'.js affect the user interface. Various buttons and features that are
not really necessary have been removed (like downloading the currently displayed
PDF document, switching to presentation mode ...) and other important features

.
have been added. Part of those features are the two little buttons X 2 . These
buttons are not available in the stock PDF.js implementation. They allow the

user to manually perform the signature placement. On pressing the button,
a preview of the signature block is being shown on the page the user is currently
on, representing the position of the signature block after the document has been
signed. See Figure 3 for an illustration. The user can move the signature block
around with his computer mouse and drag it wherever he wants it to be. If he
changes his mind and does not want to place it manually anymore, he just has to

interact with the E button which removes the placed signature block. This action
implies that the signature block is being placed automatically by the application.

PDF renderer (PDF'.js) as standalone application

Another way to interact with PDF-AS Web is to just use the PDF renderer alone.
This might be useful in scenarios where external applications make use of PDF-
AS Web, e.g. a PDF document is uploaded via SOAP upload to the web server
by an external application, then the PDF renderer can be used to show a quick
preview of the document. For that particular case, where the PDF.js instance is
used as standalone application, the user interface is further extended, see Figure 4.

Mabile BKU

Via the drop-down menu the user can switch between the different

sign methods directly within the PDF.js instance and with the button, the

File Selector

Drag and Drop your Document here .

... or select File here

Choose File | compressed.... pldi-09.pdf

Sign Method

® Handy

© Lokale BKU

© Online BKU

i

i

mm&mmmmmm‘im\mmmmmmmm

i

Sign Document

Figure 3: PDF-AS Web PDF renderer with manually placed signature block

sign process can be started. Furthermore, the standalone version of the PDF.js is
customized to support different HTML get request parameters, such as file, pdfurl
and connector. Example usage of those parameters shall be shown in Section 2.3

Preview

Trace-based Just-in-Time Type Specialization for Dynamic
Languages

Andreas Gal**, Brendan Eich*, Mike Shaver®,

— + Aulomatic Zoom 3

David Anderson®, David Mandelin®,

Mohammad R. Haghighat®, Blake Kaplan®, Graydon Hoare®, Boris Zbarsky*, Jason Orendorff*,
Jesse Ruderman®, Edwin Smith#, Rick Reitmaier, Michael Bebenitat, Mason Chang™#, Michael Franz™
Morilla Corporation”

{gal ,brendan, shaver , danderson, dnandel in arbkap, graydon, bz, jorendorf{, jrudernan}@mozilla. con

Adobe Corporation®
{edusaith, rreitmai}@adobe . com

Intel Corporation®

{mohammad r.haghighat}@intel. com

University of California, Irvine*

Abstract
IDynamic languages such as JavaScript are more difficult to com-
pile than statically typed ancs. Since no concrete type information
is available, that can
handle all possible |ypc(nmh|lunom at runtime. We prescat an al-
hnique for

that identifics rmqumny exccuted loop traces
generaies machine code on the Ay that is speci
tual dynamic types occurring on cach path through the loop. Our
method provides cheap inter-procedural type specialization, and an
elegant and efficient way of incrementally compiling lazily discov-
ered allernative paths through nested loops. We have implemented
a dynamic compiler for JavaScript based on our technigue and we
have measured speedups of 10x and mare for certain benchmark
programs.

Categories and Subject Descriptors 134 | Programming Lan-
‘guages|: Processors — Incremental compilers, code generation.

General Terms Design, Experimentation, Measurement, Perfor-
mance.

Keywords JavaScript, just-in-time compilation, trace trees.

1. Introduction

Iynamic languages such as JavaScript, Python, and Ruby, are pop-
ular since they arc expressive, accessible 1o non-experts, and make
deployment as casy as distributing a source file. They are used for
small scripts as well s for complex applications. JavaScript, for
example, is the de facto standand for client-side web programming

Permissian 10, mske digits] or hard copies af 3l or par of this work for person] or
elassroom use is gramied withen fee provided that copics are not made or disributed

[mbebenit,changm, franz}fuci. edn

and is used for the application logic of browser-based productivity
applications such as Google Mail, Google Docs and Zimbra Col-
laboration Suite. In this domain, in order o provide o fuid user
experience and enable a new generation of applications, virtual ma-
chines must provide a low startup time and high performance.

Compilers for statically typed languages rely o type informa-
tion code. Ina typed pro-
gramming language such as JavaScript, the types of expressions
‘may vary at runtime. This means that the compiler can no longer
casily transform operations into machin instructions that operate
type. Without exact type information, the compiler
lower gencralized machine code that can deal with all
potential type combinations. Whilc compile-time static type infer-
ence might be able to gather type information o generae opti-
‘mized machine code, traditional static analysis is very expensive
and hence not well suited for the highly ineractive environment of
2 web browser.

We present a trace-bascd compilation technique for dynamic
languages that reconciles specd of compilation with excellent per-
formance of the ;;amLm ‘machine code. Qur system uses a mixed-

JavaScriptin a
fast-starting hytecode |l\lﬂ'prtrxr As the program runs, the system
identifies hot (frequently executed) bytecode sequences, records
them, and compiles. them 1o fast native code. We call such a se-
quence of instructions a trace.

Unlike method-hased dynamic compilers, our dynamic com-
piler operates at the granularity of individual loops. This design
choice is based an the expectation that programs spend most of
their time in hot loops. Even in dynamically typed languages, we
expect hot [0ops to be mostly rype-stable, meaning that the types of
values are invariant. (12) For example, we would expect loop coun-
ters that start as integers to remain integers for all itcrations. When
bm.h of mmcap:cmlm hold, & trace-based compiler can cover

of typ lized, ef-

mumy compiled puy

b

1]

Mobile BKU

Trace-based Just-in-Time Type Specialization for Dynamic
Languages

Andreas Gal* ', Brendan Eich*, Mike Shaver*, David Anderson*, David Mandelin*,
Mohammad R. Haghighals, Blake Kaplan*, Graydon Hoare*, Boris Zbarsky*, Jason Orendorff*,
Jesse Ruderman®, Edwin Smith, Rick Reitmaier™, Michael Bebenitat, Mason Chang**, Michael Franzt
Morilla Corporation®
{gal ,brendan, shaver ,danderson, dmandelin,mrbkap, graydon, bz, jorendorff, jruderman}@nozilla. com

Adobe Corporation?
{edwsmith,rreitmai}8adobe. com

Intel Corporation®
{mohammad.r.haghighat}@intel. con

University of California, Irvine*
{mbebenit, changm, franz }uci . edu

Abstract

Dynamic languages such as JavaSeript are more difficult to com-
pile than statically typed ones. Since no concrete type information
is available, traditional compilers need to emit generic code that can
le type combinations at runtime. We present an al-
ternative ion technique for dynamically-typed languag
ihat identilies frequently executed loop traces al run-time and then
senerates machine code on the fly that is specialized for the ac-
twal dynamic types occurring on each path through the loop. Our
methed provides cheap inter-procedural Lype specialization, and an
elegant and efficient way of incrementally compiling lazily discov-
ered alternative paths through nested loaps. We have implemented
a dynamic compiler for JavaScript based on our technique and we
have measured speedups of 10x and more for certain benchmark
programs.

Categories and Subject Descriptors D34 |Programming Lan-
guages): Processors — Incremenial compilers, code generation.

General Terms Design, Experimentation, Measurement, Perfor-
mance.

Keywords JavaScript, just-in-time compilation, trace trees.

1. Introduction

and is used for the application logic of browser-based productivity
applications such as Google Mail, Google Docs and Zimbra Col-
laboration Suite. In this domain, in order to provide a fluid user
experience and enable a new generation of applications, virtual ma-
chines must provide a low startup time and high performance.

Compilers for statically typed languages rely on type informa-
tion to generate efficient machi d ically typed pro-
gramming language such as JavaScript, the types of expressions
may vary al runtime. This means that the compiler can no longer
easily transform operations into machine instructions that operate
on one specific type. Without exact Lype information, the compiler
must emit slower generalized machine code that can deal with all
potential type combinations. While compile-time static type infer-
ence might be able to gather type information o generale opli-
mized machine code, traditional static analysis is very expensive
and hence not well suited for the highly interactive environment of
a web browser.

We present a trace-based compilation technique for dynamic
languages that reconciles speed of compilation with excellent per-
formance of the generated machine code. Our system uses a mixed-
mode execution approach: the system starts running JavaScript in a
fast-starting bylecode interpreter. As the program runs, the system
identifies hot (frequently executed) bytecode sequences, records
them, and compiles them to fast native code. We call such a se-
ausn A i En?

Figure 4: PDF-AS Web, PDF renderer only

2 Documentation

2.1 Project Files

The main files and folders worked with during this projects are:
e ./pdf-as-web/
— index.jsp /* Start page of PDF-AS Web’s online presence */
e . /pdf-as-web/assets/css/
— style.css /* Style sheet for PDF-AS Web’s online presence */
e ./pdf-as-web/assets/js/

— dragNdrop.js /* JavaScript for PDF-AS Web’s online presence */

e . /pdf-as-web/assets/js/pdf.js/web/
— viewer.html /* Customized HTML template for the PDF.js viewer */
— viewer.js /* Customized version of PDF.js’ viewer.js */
— app.js /* JavaScript that works within PDJ.js’ viewer.html */
dragNdrop.js

This JavaScript file is used within the index.jsp file and is responsible for handling
things like

e drag and drop file selection
e cvent handling
e opening the PDF preview for a selected PDF document

e performing requests to the sign servlet if a users presses the sign button

app.-js

This JavaScript file is used within the viewer.html file and is responsible for
handling things like

using PDF'.js functionality to open and display PDF documents

manual signature placement

event handling

e managing the behaviour if PDF'.js is used as standalone application

viewer.js

This JavaScript file is a main component of the PDF.js library and has been
slightly customized to fit into this project. The changes made to this file are cer-
tainly good to know if the application wants to get updated to a newer PDF.js
versions, hence, they shall be denoted as follows:

The function web ViewerLoad(evt) starting at line 6668 has been altered, to display
the user selected PDF document as soon as PDF.js is initialized.

N O U W N

O © 00O Ui Wi+

—

~N O Uk W N

function webViewerLoad(evt) {
//PDFViewerApplication.initialize() .then(webViewerInitialized);
PDFViewerApplication.initialize() .then(function() {
webViewerInitialized();
displayPdf ()
b
}

State: webViewerLoad after the change

function webViewerLoad(evt) {
PDFViewerApplication.initialize() .then(webViewerInitialized);

I
State: webViewerLoad before the change

The function webViewerChange(evt) starting at line 7006 has been altered, such
that, if a user opens a new file via the PDF'js user interface, the file variable within
app.js also gets updated (needs to be done to make sure that the sign function in
dragNdrop.js and app.js works).

window.addEventListener(’change’, function webViewerChange(evt) {
var file = files[0];

//ADDED
setFile(file);

if (!PDFJS.disableCreateObjectURL &&

-
State: webViewerChange after the change

window.addEventListener (’change’, function webViewerChange(evt) {
var file = files[0];
if (!PDFJS.disableCreateObjectURL &&

.
State: webViewerChange before the change

The function web ViewerInitialized() starting at line 6676 has been altered in a way
that PDF'.js does not handle the HTML get request parameter file anymore. The
handling of that parameter is done in app.js.

1 function webViewerInitialized() {

2 a0

3 /*if (file && file.lastIndex0f(’file:’, 0) === 0) {

4 // file:-scheme. Load the contents in the main thread because QtWebKit
5 // cannot load file:-URLs in a Web Worker. file:-URLs are usually loaded
6 // very quickly, so there is no need to set up progress event listeners.
7 PDFViewerApplication.setTitleUsingUrl(file);

8 var xhr = new XMLHttpRequest() ;

9 xhr.onload = function() {

10 PDFViewerApplication.open(new Uint8Array(xhr.response), 0);

11 };

12 try {

13 xhr.open(°GET’, file);

14 xhr.responseType = ’arraybuffer’;

15 xhr.send () ;

16 } catch (e) {

17 PDFViewerApplication.error (mozL10n.get(’loading_error’, null,

18 ’An error occurred while loading the PDF.’), e);

19 +

20 return;

21 }

22

23 if (file) {

24 PDFViewerApplication.open(file, 0);

25 }x/

26 %}

State: webViewerlnitialized after the change

1 function webViewerInitialized() {

2 aoc

3 if (file &% file.lastIndex0f(’file:’, 0) === 0) {

4 // file:-scheme. Load the contents in the main thread because QtWebKit
5 // cannot load file:-URLs in a Web Worker. file:-URLs are usually loaded
6 // very quickly, so there is no need to set up progress event listeners.
7 PDFViewerApplication.setTitleUsingUrl(file) ;

8 var xhr = new XMLHttpRequest();

9 xhr.onload = function() {

10 PDFViewerApplication.open(new Uint8Array(xhr.response), 0);

11 };

12 try {

13 xhr.open(’GET’, file);

14 xhr.responseType = ’arraybuffer’;

15 xhr.send () ;

16 } catch (e) {

17 PDFViewerApplication.error (mozL10On.get (’loading_error’, null,

18 ’An error occurred while loading the PDF.’), e);

19 }

20 return;

21
22
23
24
25
26

[\)

[\)

}

if (file) {
PDFViewerApplication.open(file, 0);
X
}

State: webViewerlnitialized before the change

2.2 Signature placement

The signature placement functionality is implemented within the app.js file. The
main functions responsible for that are

function placeSignature(evt) {

}

Purpose: Place a signature preview at the top left of the current page of the PDF
document. The signature preview is created by the wvisblock servlet. Information
about what page the signature should placed on is extracted from PDF.js

function makeSignatureDraggable(signature) {

}

Purpose: Uses jquery.ui to makes a previously added signature preview draggable
within the page it appears in.

function updateSignaturePosition(signature) {

}

Purpose: Keeps track of the position of the signature within the page it appears
in. This is needed because the sign servlet expects the position of the signature
block as request parameter if the signature is placed manually.

function removeSignature() {

}

Purpose: Remove a previously placed signature block.

2.3 Entry Points to the PDF'.js standalone application

As already mentioned in Section 1.4, there exist HI'ML get request parameters that
can be appended to the URL to control the behaviour of the PDF.js standalone
application. The set of parameters consists of file, pdfurl and connector. The file
parameter can be used to display a PDF document that is already available on the
web server. For example if someone makes a request to http://localhost:8080/
pdf-as-web/assets/js/pdf. js/web/viewer .html?file=/pdf-as-web/assets/
test.pdf then the file located at /pdf-as-web/assets/test.pdf is fetched from the
server and rendered with PDF.js.

It is also possible to combine the file parameter with the connector parame-
ter. With the connector parameter, it is possible to already preselect a particu-
lar sign method. So, if someone requests for example http://localhost:8080/
pdf-as-web/assets/js/pdf.js/web/viewer.html?file=/pdf-as-web/assets/
test.pdf&connector=bku then the file located at /pdf-as-web/assets/test.pdf is
fetched from the server and rendered with PDF.js and the sign method will be
preselected to bku, which means that Local BKU should be used as sign method.
A list of the currently supported sign methods is available in Table 1.

Table 1: Valules of connector and what it preselects

Connector parameter | Preselects
bku Local BKU
onlinebku Online BKU
mobilebku Handy

Another way to use the PDFjs standalone application is to call it via the pdfurl
parameter and the connector parameter. This will immediately start the sign pro-
cess on the PDF document given by the pdfurl and the chosen sign method given by
connector. E.g. a request to http://localhost:8080/pdf-as-web/assets/js/
pdf . js/web/viewer.html?pdfurl=http://kmmc.in/wp-content/uploads/2014/
01/lesson2.pdf&connector=bku starts the sign process for the PDF document
available by the url http://kmmc.in/wp-content/uploads/2014,/01/lesson2.pdf us-
ing the Online BKU method.

Of course, PDF'.js standalone can also be used without appending any HTML
get request parameters. In that case, the user gets served with the plain PDF.js
viewer without any PDF documents being open. To open a PDF document, the
user can use the "open File” button of the menu bar. All the other features like
signature placement and choosing a sign method are naturally available as well.

http://localhost:8080/pdf-as-web/assets/js/pdf.js/web/viewer.html?file=/pdf-as-web/assets/test.pdf
http://localhost:8080/pdf-as-web/assets/js/pdf.js/web/viewer.html?file=/pdf-as-web/assets/test.pdf
http://localhost:8080/pdf-as-web/assets/js/pdf.js/web/viewer.html?file=/pdf-as-web/assets/test.pdf
http://localhost:8080/pdf-as-web/assets/js/pdf.js/web/viewer.html?file=/pdf-as-web/assets/test.pdf&connector=bku
http://localhost:8080/pdf-as-web/assets/js/pdf.js/web/viewer.html?file=/pdf-as-web/assets/test.pdf&connector=bku
http://localhost:8080/pdf-as-web/assets/js/pdf.js/web/viewer.html?file=/pdf-as-web/assets/test.pdf&connector=bku
http://localhost:8080/pdf-as-web/assets/js/pdf.js/web/viewer.html?pdfurl=http://kmmc.in/wp-content/uploads/2014/01/lesson2.pdf&connector=bku
http://localhost:8080/pdf-as-web/assets/js/pdf.js/web/viewer.html?pdfurl=http://kmmc.in/wp-content/uploads/2014/01/lesson2.pdf&connector=bku
http://localhost:8080/pdf-as-web/assets/js/pdf.js/web/viewer.html?pdfurl=http://kmmc.in/wp-content/uploads/2014/01/lesson2.pdf&connector=bku

1
2
3
4
)
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

29
30
31
32
33
34
35
36
37
38

2.4 Overriding/Extending behaviour of the sign button in

PDF'.js standalone
If the sign button is clicked, the function sign

function sign(statusObj) {
var file = statusObj.getFile();
if(1file) {
alert("No File Opened");
return;
}
var fd = new FormData();
fd.append("source", "internal');
fd.append("connector", global_status.getConnector());
fd.append("pdf-file", global_status.getFile());

if (isSignaturePlaced()) {
fd.append("sig-pos-x", global_status.getSignature() .posx);
fd.append("sig-pos-y", global_status.getSignature().posy);
fd.append("sig-pos-p", global_status.getSignature() .page);
}

$.ajax({
url: "/pdf-as-web/Sign",
data: fd,
processData: false,
contentType: false,
type: "POST",
success: function(response) {
$("#fade") .remove() ;
$("#popup") .remove () ;
var fade_div = "<div id=’fade’ class=’black_overlay’></div>";

var popup_div = "<div id=’popup’ class=’white_content’><a href=’javascript

:void(0)’ id=’closelink’>Close<div id=’resp’></div></div>"
$("body") .append (fade_div) ;
$("body") . append (popup_div) ;
$("#resp") .html (response) ;
$("#closelink") .bind("click", function(evt) {
$("#fade") .remove() ;
$ ("#popup") .remove () ;
i F
}
T);
}

within the app.js file is being executed. This function expects a status object as

its only argument.

So far, the status object is a global object within the app.js file and encapsulates
information about which connector is selected and which file is selected, the filepath
that was provided by the file HTML get request parameter, the pdfurl that was
given by the pdfurl HTML get request parameter, and a not yet used redirect url.

The sign function can for instance be modified in a way such that the function
acts differently for status objects with different values.

2.5 Limitations

Due to some technologies that are being used in this project, not all browsers
are fully supported. Especially older versions of the Internet Explorer are not

supported at all. Table 2 gives a brief overview about which browsers are supported
by the PDF.js library.

Table 2: PDF'.js supported browsers (src: https://github.com/mozilla/pdf.
js/wiki/Frequently-Asked-Questions)
Browser Supported | Notes
Firefox Stable | yes -
Chrome Stable | yes -
Opera Stable | yes -
Android limited Android’s Web Browser version 4.0 or below
lacks a number of features or has defects, e.g.
in typed arrays or HT'TP range requests
Safari limited Safari (desktop and mobile) lacks a number
of features or has defects, e.g. in typed arrays
or HT'TP range requests

IE10+ limited IE 10 or above may lack of features or may
have defects.

IE9 limited IE9 lacks a number of features and most no-
tably typed arrays which causes subpar per-
formance

<=IE8 NO IES and below are missing too many features

to be supported.

https://github.com/mozilla/pdf.js/wiki/Frequently-Asked-Questions
https://github.com/mozilla/pdf.js/wiki/Frequently-Asked-Questions

	Report
	Introduction
	Status Quo
	Motivation and Goal
	Solution

	Documentation
	Project Files
	Signature placement
	Entry Points to the PDF.js standalone application
	Overriding/Extending behaviour of the sign button in PDF.js standalone
	Limitations

