
Project IT-Security
PDF-Over and HTML5

Report & Documentation

Thomas Felber 1031194

Contents

1 Report
1.1 Introduction .
1.2 Status Quo .
1.3 Motivation and Goal .
1.4 Solution .

2 Documentation
2.1 Project Files .
2.2 Signature placement .
2.3 Entry Points to the PDF.js standalone application
2.4 Overriding/Extending behaviour of the sign button in PDF.js stan-

dalone .
2.5 Limitations .

1 Report

1.1 Introduction

PDF-AS is a software library, developed in JAVA, that makes use of advanced and
qualified certificates, to allow users to electronically sign PDF documents. One
of the core components of PDF-AS is it’s web module PDF-AS Web. PDF-AS
Web is built upon PDF-AS and establishes a web interface that can be used to
sign PDF documents but also can be used by external applications to embed PDF
signatures.

1.2 Status Quo

Currently, the PDF-AS Web online presence is quite basic. It offers different

Figure 1: Current state of the PDF-AS Web online presence (https://demo.
egiz.gv.at/demoportal-pdf_as/)

methods to sign PDF documents, however isn’t really visually appealing yet and
doesn’t offer any extra features like PDF preview or manual signature placement.

1.3 Motivation and Goal

Since PDF-AS Web’s online presence is still that slim, it is of concern to improve
it’s current state. Therefore, in the course of this project, several enhancements
to the website are being made. The whole website gets a visual overhaul using
HTML5 in combination with CSS3. In terms of additional features, Mozilla Labs’
PDF.js library is used to make previewing PDF documents possible. Also new
features that come along with HTML5, such as drag and drop file selection, are
being taken advantage of. That is, the goal of this project can be summarized like
that:

• Use HTML5 + CSS3 and perform a visual overhaul on the website

• Introduce new features like a PDF rendering and drag and drop file selection

• Let the user manually place signatures

https://demo.egiz.gv.at/demoportal-pdf_as/
https://demo.egiz.gv.at/demoportal-pdf_as/

1.4 Solution

Visual overhaul

As already mentioned in Section 1.3, HTML5 + CSS3 was used to recreate PDF-
AS Web’s web interface. The new website consists of several different parts and
is illustrated in Figure 2. The File Selector section is here to let a user select the
PDF document that he wants to sign. He can either choose to select the PDF
file via the traditional HTML file selector element (i.e. press on ”Browse...”) or
just drag and drop the PDF file from his file manager into the dropzone (upper
part of the File Selector section). Via the Sign Method section, a user can choose

Figure 2: Updated PDF-AS Web online presence

between different methods to actually sign a previously selected PDF document.
Available options are Handy, Lokale BKU, Online BKU and (if enabled on the
web server) Server Keystore. Depending on the choice, the user gets redirected

to a different service that requires some kind of authentication and then signs the
PDF document with the user’s electronic signature. Within the Language section,
a user has the option the select which language he wants the signature to be in.
Currently only German and English are supported. Below the Language section,
there is a button that starts the sign process if it is clicked.

A main component of the website is the Preview section. Within that, a user
gets a visual representation of the PDF document which he has previously selected.
He can scroll through the different pages of the document, adjust the zoom, open
a different file, print the file, place a signature etc. .

PDF renderer (PDF.js) and signature placement

In order to render the user selected PDF document, Mozilla Labs’ PDF.js library
is being used. Within the Preview section in Figure 2, a customized instance
of the PDF.js renderer can be seen. Some of the customization that have been
made to PDF.js affect the user interface. Various buttons and features that are
not really necessary have been removed (like downloading the currently displayed
PDF document, switching to presentation mode ...) and other important features

have been added. Part of those features are the two little buttons . These
buttons are not available in the stock PDF.js implementation. They allow the

user to manually perform the signature placement. On pressing the button,
a preview of the signature block is being shown on the page the user is currently
on, representing the position of the signature block after the document has been
signed. See Figure 3 for an illustration. The user can move the signature block
around with his computer mouse and drag it wherever he wants it to be. If he
changes his mind and does not want to place it manually anymore, he just has to

interact with the button which removes the placed signature block. This action
implies that the signature block is being placed automatically by the application.

PDF renderer (PDF.js) as standalone application

Another way to interact with PDF-AS Web is to just use the PDF renderer alone.
This might be useful in scenarios where external applications make use of PDF-
AS Web, e.g. a PDF document is uploaded via SOAP upload to the web server
by an external application, then the PDF renderer can be used to show a quick
preview of the document. For that particular case, where the PDF.js instance is
used as standalone application, the user interface is further extended, see Figure 4.

Via the drop-down menu the user can switch between the different

sign methods directly within the PDF.js instance and with the button, the

Figure 3: PDF-AS Web PDF renderer with manually placed signature block

sign process can be started. Furthermore, the standalone version of the PDF.js is
customized to support different HTML get request parameters, such as file, pdfurl
and connector. Example usage of those parameters shall be shown in Section 2.3

Figure 4: PDF-AS Web, PDF renderer only

2 Documentation

2.1 Project Files

The main files and folders worked with during this projects are:

• ./pdf-as-web/

– index.jsp /* Start page of PDF-AS Web’s online presence */

• ./pdf-as-web/assets/css/

– style.css /* Style sheet for PDF-AS Web’s online presence */

• ./pdf-as-web/assets/js/

– dragNdrop.js /* JavaScript for PDF-AS Web’s online presence */

• ./pdf-as-web/assets/js/pdf.js/web/

– viewer.html /* Customized HTML template for the PDF.js viewer */

– viewer.js /* Customized version of PDF.js ’ viewer.js */

– app.js /* JavaScript that works within PDJ.js’ viewer.html */

dragNdrop.js

This JavaScript file is used within the index.jsp file and is responsible for handling
things like

• drag and drop file selection

• event handling

• opening the PDF preview for a selected PDF document

• performing requests to the sign servlet if a users presses the sign button

app.js

This JavaScript file is used within the viewer.html file and is responsible for
handling things like

• using PDF.js functionality to open and display PDF documents

• manual signature placement

• event handling

• managing the behaviour if PDF.js is used as standalone application

viewer.js

This JavaScript file is a main component of the PDF.js library and has been
slightly customized to fit into this project. The changes made to this file are cer-
tainly good to know if the application wants to get updated to a newer PDF.js
versions, hence, they shall be denoted as follows:

The function webViewerLoad(evt) starting at line 6668 has been altered, to display
the user selected PDF document as soon as PDF.js is initialized.

1 function webViewerLoad(evt) {

2 //PDFViewerApplication.initialize().then(webViewerInitialized);

3 PDFViewerApplication.initialize().then(function() {

4 webViewerInitialized();

5 displayPdf()

6 });

7 }

State: webViewerLoad after the change

1 function webViewerLoad(evt) {

2 PDFViewerApplication.initialize().then(webViewerInitialized);

3 }

State: webViewerLoad before the change

The function webViewerChange(evt) starting at line 7006 has been altered, such
that, if a user opens a new file via the PDF.js user interface, the file variable within
app.js also gets updated (needs to be done to make sure that the sign function in
dragNdrop.js and app.js works).

1 window.addEventListener(’change’, function webViewerChange(evt) {

2 ...

3 var file = files[0];

4
5 //ADDED

6 setFile(file);

7
8 if (!PDFJS.disableCreateObjectURL &&

9 ...

10 }

State: webViewerChange after the change

1 window.addEventListener(’change’, function webViewerChange(evt) {

2 ...

3 var file = files[0];

4
5 if (!PDFJS.disableCreateObjectURL &&

6 ...

7 }

State: webViewerChange before the change

The function webViewerInitialized() starting at line 6676 has been altered in a way
that PDF.js does not handle the HTML get request parameter file anymore. The
handling of that parameter is done in app.js.

1 function webViewerInitialized() {

2 ...

3 /*if (file && file.lastIndexOf(’file:’, 0) === 0) {

4 // file:-scheme. Load the contents in the main thread because QtWebKit

5 // cannot load file:-URLs in a Web Worker. file:-URLs are usually loaded

6 // very quickly, so there is no need to set up progress event listeners.

7 PDFViewerApplication.setTitleUsingUrl(file);

8 var xhr = new XMLHttpRequest();

9 xhr.onload = function() {

10 PDFViewerApplication.open(new Uint8Array(xhr.response), 0);

11 };

12 try {

13 xhr.open(’GET’, file);

14 xhr.responseType = ’arraybuffer’;

15 xhr.send();

16 } catch (e) {

17 PDFViewerApplication.error(mozL10n.get(’loading_error’, null,

18 ’An error occurred while loading the PDF.’), e);

19 }

20 return;

21 }

22
23 if (file) {

24 PDFViewerApplication.open(file, 0);

25 }*/

26 }

State: webViewerInitialized after the change

1 function webViewerInitialized() {

2 ...

3 if (file && file.lastIndexOf(’file:’, 0) === 0) {

4 // file:-scheme. Load the contents in the main thread because QtWebKit

5 // cannot load file:-URLs in a Web Worker. file:-URLs are usually loaded

6 // very quickly, so there is no need to set up progress event listeners.

7 PDFViewerApplication.setTitleUsingUrl(file);

8 var xhr = new XMLHttpRequest();

9 xhr.onload = function() {

10 PDFViewerApplication.open(new Uint8Array(xhr.response), 0);

11 };

12 try {

13 xhr.open(’GET’, file);

14 xhr.responseType = ’arraybuffer’;

15 xhr.send();

16 } catch (e) {

17 PDFViewerApplication.error(mozL10n.get(’loading_error’, null,

18 ’An error occurred while loading the PDF.’), e);

19 }

20 return;

21 }

22
23 if (file) {

24 PDFViewerApplication.open(file, 0);

25 }

26 }

State: webViewerInitialized before the change

2.2 Signature placement

The signature placement functionality is implemented within the app.js file. The
main functions responsible for that are

1 function placeSignature(evt) {

2 ...

3 }

Purpose: Place a signature preview at the top left of the current page of the PDF
document. The signature preview is created by the visblock servlet. Information
about what page the signature should placed on is extracted from PDF.js

1 function makeSignatureDraggable(signature) {

2 ...

3 }

Purpose: Uses jquery.ui to makes a previously added signature preview draggable
within the page it appears in.

1 function updateSignaturePosition(signature) {

2 ...

3 }

Purpose: Keeps track of the position of the signature within the page it appears
in. This is needed because the sign servlet expects the position of the signature
block as request parameter if the signature is placed manually.

1 function removeSignature() {

2 ...

3 }

Purpose: Remove a previously placed signature block.

2.3 Entry Points to the PDF.js standalone application

As already mentioned in Section 1.4, there exist HTML get request parameters that
can be appended to the URL to control the behaviour of the PDF.js standalone
application. The set of parameters consists of file, pdfurl and connector. The file
parameter can be used to display a PDF document that is already available on the
web server. For example if someone makes a request to http://localhost:8080/

pdf-as-web/assets/js/pdf.js/web/viewer.html?file=/pdf-as-web/assets/

test.pdf then the file located at /pdf-as-web/assets/test.pdf is fetched from the
server and rendered with PDF.js.

It is also possible to combine the file parameter with the connector parame-
ter. With the connector parameter, it is possible to already preselect a particu-
lar sign method. So, if someone requests for example http://localhost:8080/

pdf-as-web/assets/js/pdf.js/web/viewer.html?file=/pdf-as-web/assets/

test.pdf&connector=bku then the file located at /pdf-as-web/assets/test.pdf is
fetched from the server and rendered with PDF.js and the sign method will be
preselected to bku, which means that Local BKU should be used as sign method.
A list of the currently supported sign methods is available in Table 1.

Table 1: Valules of connector and what it preselects
Connector parameter Preselects
bku Local BKU
onlinebku Online BKU
mobilebku Handy

Another way to use the PDF.js standalone application is to call it via the pdfurl
parameter and the connector parameter. This will immediately start the sign pro-
cess on the PDF document given by the pdfurl and the chosen sign method given by
connector. E.g. a request to http://localhost:8080/pdf-as-web/assets/js/

pdf.js/web/viewer.html?pdfurl=http://kmmc.in/wp-content/uploads/2014/

01/lesson2.pdf&connector=bku starts the sign process for the PDF document
available by the url http://kmmc.in/wp-content/uploads/2014/01/lesson2.pdf us-
ing the Online BKU method.

Of course, PDF.js standalone can also be used without appending any HTML
get request parameters. In that case, the user gets served with the plain PDF.js
viewer without any PDF documents being open. To open a PDF document, the
user can use the ”open File” button of the menu bar. All the other features like
signature placement and choosing a sign method are naturally available as well.

http://localhost:8080/pdf-as-web/assets/js/pdf.js/web/viewer.html?file=/pdf-as-web/assets/test.pdf
http://localhost:8080/pdf-as-web/assets/js/pdf.js/web/viewer.html?file=/pdf-as-web/assets/test.pdf
http://localhost:8080/pdf-as-web/assets/js/pdf.js/web/viewer.html?file=/pdf-as-web/assets/test.pdf
http://localhost:8080/pdf-as-web/assets/js/pdf.js/web/viewer.html?file=/pdf-as-web/assets/test.pdf&connector=bku
http://localhost:8080/pdf-as-web/assets/js/pdf.js/web/viewer.html?file=/pdf-as-web/assets/test.pdf&connector=bku
http://localhost:8080/pdf-as-web/assets/js/pdf.js/web/viewer.html?file=/pdf-as-web/assets/test.pdf&connector=bku
http://localhost:8080/pdf-as-web/assets/js/pdf.js/web/viewer.html?pdfurl=http://kmmc.in/wp-content/uploads/2014/01/lesson2.pdf&connector=bku
http://localhost:8080/pdf-as-web/assets/js/pdf.js/web/viewer.html?pdfurl=http://kmmc.in/wp-content/uploads/2014/01/lesson2.pdf&connector=bku
http://localhost:8080/pdf-as-web/assets/js/pdf.js/web/viewer.html?pdfurl=http://kmmc.in/wp-content/uploads/2014/01/lesson2.pdf&connector=bku

2.4 Overriding/Extending behaviour of the sign button in
PDF.js standalone

If the sign button is clicked, the function sign

1 function sign(statusObj) {

2 var file = statusObj.getFile();

3 if(!file) {

4 alert("No File Opened");

5 return;

6 }

7 var fd = new FormData();

8 fd.append("source", "internal");

9 fd.append("connector", global_status.getConnector());

10 fd.append("pdf-file", global_status.getFile());

11
12 if(isSignaturePlaced()) {

13 fd.append("sig-pos-x", global_status.getSignature().posx);

14 fd.append("sig-pos-y", global_status.getSignature().posy);

15 fd.append("sig-pos-p", global_status.getSignature().page);

16 }

17
18 $.ajax({

19 url: "/pdf-as-web/Sign",

20 data: fd,

21 processData: false,

22 contentType: false,

23 type: "POST",

24 success: function(response) {

25 $("#fade").remove();

26 $("#popup").remove();

27 var fade_div = "<div id=’fade’ class=’black_overlay’></div>";

28 var popup_div = "<div id=’popup’ class=’white_content’><a href=’javascript

:void(0)’ id=’closelink’>Close<div id=’resp’></div></div>"

29 $("body").append(fade_div);

30 $("body").append(popup_div);

31 $("#resp").html(response);

32 $("#closelink").bind("click", function(evt) {

33 $("#fade").remove();

34 $("#popup").remove();

35 });

36 }

37 });

38 }

within the app.js file is being executed. This function expects a status object as
its only argument.

So far, the status object is a global object within the app.js file and encapsulates
information about which connector is selected and which file is selected, the filepath
that was provided by the file HTML get request parameter, the pdfurl that was
given by the pdfurl HTML get request parameter, and a not yet used redirect url.

The sign function can for instance be modified in a way such that the function
acts differently for status objects with different values.

2.5 Limitations

Due to some technologies that are being used in this project, not all browsers
are fully supported. Especially older versions of the Internet Explorer are not
supported at all. Table 2 gives a brief overview about which browsers are supported
by the PDF.js library.

Table 2: PDF.js supported browsers (src: https://github.com/mozilla/pdf.

js/wiki/Frequently-Asked-Questions)
Browser Supported Notes
Firefox Stable yes -
Chrome Stable yes -
Opera Stable yes -
Android limited Android’s Web Browser version 4.0 or below

lacks a number of features or has defects, e.g.
in typed arrays or HTTP range requests

Safari limited Safari (desktop and mobile) lacks a number
of features or has defects, e.g. in typed arrays
or HTTP range requests

IE10+ limited IE 10 or above may lack of features or may
have defects.

IE9 limited IE9 lacks a number of features and most no-
tably typed arrays which causes subpar per-
formance

<=IE8 NO IE8 and below are missing too many features
to be supported.

https://github.com/mozilla/pdf.js/wiki/Frequently-Asked-Questions
https://github.com/mozilla/pdf.js/wiki/Frequently-Asked-Questions

	Report
	Introduction
	Status Quo
	Motivation and Goal
	Solution

	Documentation
	Project Files
	Signature placement
	Entry Points to the PDF.js standalone application
	Overriding/Extending behaviour of the sign button in PDF.js standalone
	Limitations

